Source code for aydin.it.transforms.histogram

import numpy

from numpy.typing import ArrayLike
from skimage.exposure import equalize_adapthist, cumulative_distribution

from aydin.it.transforms.base import ImageTransformBase
from aydin.util.log.log import lsection, lprint


[docs]class HistogramEqualisationTransform(ImageTransformBase): """Histogram Equalisation For some images with extremely unbalanced histograms, applying histogram equalisation will improve results. Two modes are supported: 'equalize', and 'clahe'. """ preprocess_description = ( "Apply histogram equalisation" + ImageTransformBase.preprocess_description ) postprocess_description = ( "Undo histogram equalisation" + ImageTransformBase.postprocess_description ) postprocess_supported = True postprocess_recommended = True def __init__( self, mode: str = 'equalize', scale: float = 1.0 / 8, priority: float = 0.12, **kwargs, ): """ Constructs a Histogram Transform Parameters ---------- mode : str Two modes are supported: 'equalize', and 'clahe'. scale : float Scale of the kernel expressed relatively to the size of the image, values are within [0,1]. priority : float The priority is a value within [0,1] used to determine the order in which to apply the pre- and post-processing transforms. Transforms are sorted and applied in ascending order during preprocesing and in the reverse, descending, order during post-processing. """ super().__init__(priority=priority, **kwargs) self.mode = mode self.scale = scale self._cdf = None self._bin_centers = None self._original_dtype = None lprint(f"Instanciating: {self}") # We exclude certain fields from saving: def __getstate__(self): state = self.__dict__.copy() del state['_cdf'] del state['_bin_centers'] del state['_original_dtype'] return state def __str__(self): return f'{type(self).__name__}' f' (mode={self.mode},' f' scale={self.scale})' def __repr__(self): return self.__str__() def preprocess(self, array: ArrayLike): with lsection( f"Equalises histogram for array of shape: {array.shape} and dtype: {array.dtype}" ): self._original_dtype = array.dtype array = array.astype(numpy.float32, copy=False) if self.mode == 'equalize': self._cdf, self._bin_centers = cumulative_distribution(array) new_array = _interpolation(array, self._bin_centers, self._cdf) elif self.mode == 'clahe': kernel_size = tuple(s / self.scale for s in array.shape) new_array = equalize_adapthist(array, kernel_size=kernel_size) else: raise ValueError( f"Unsupported mode for histogram transform: {self.mode}" ) return new_array def postprocess(self, array: ArrayLike): if not self.do_postprocess: return array with lsection( f"Undoing histogram equalisation for array of shape: {array.shape} and dtype: {array.dtype}" ): array = array.astype(numpy.float32, copy=False) if self.mode == 'equalize': new_array = _interpolation(array, self._cdf, self._bin_centers) elif self.mode == 'clahe': # Inverse not supported yet: new_array = array else: raise ValueError( f"Unsupported mode for histogram transform: {self.mode}" ) # cast back to original dtype: new_array = new_array.astype(self._original_dtype, copy=False) return new_array
def _interpolation(image, x, y): out = numpy.interp(image.flat, x, y) return out.reshape(image.shape)