Source code for aydin.it.classic_denoisers.harmonic

import math
from functools import partial
from typing import Optional, List, Tuple

import numpy
from numpy.linalg import norm
from numpy.typing import ArrayLike
from scipy.ndimage import (
    median_filter,
    minimum_filter,
    maximum_filter,
    uniform_filter,
    rank_filter,
    gaussian_filter,
)

from aydin.it.classic_denoisers import _defaults
from aydin.util.crop.rep_crop import representative_crop
from aydin.util.j_invariance.j_invariance import calibrate_denoiser
from aydin.util.log.log import lprint


[docs]def calibrate_denoise_harmonic( image: ArrayLike, rank: bool = False, crop_size_in_voxels: Optional[int] = _defaults.default_crop_size_verylarge.value, optimiser: str = _defaults.default_optimiser.value, max_num_evaluations: int = _defaults.default_max_evals_hyperlow.value, blind_spots: Optional[List[Tuple[int]]] = _defaults.default_blind_spots.value, jinv_interpolation_mode: str = _defaults.default_jinv_interpolation_mode.value, display_images: bool = False, display_crop: bool = False, **other_fixed_parameters, ): """ Calibrates the Harmonic denoiser for the given image and returns the optimal parameters obtained using the N2S loss. Parameters ---------- image: ArrayLike Image to calibrate denoiser for. rank: bool If true, uses a better estimate of min and max filters using a rank filter, may be much slower. (advanced) crop_size_in_voxels: int or None for default Number of voxels for crop used to calibrate denoiser. Increase this number by factors of two if denoising quality is unsatisfactory -- this can be important for very noisy images. Values to try are: 65000, 128000, 256000, 320000. We do not recommend values higher than 512000. optimiser: str Optimiser to use for finding the best denoising parameters. Can be: 'smart' (default), or 'fast' for a mix of SHGO followed by L-BFGS-B. (advanced) max_num_evaluations: int Maximum number of evaluations for finding the optimal parameters. Increase this number by factors of two if denoising quality is unsatisfactory. blind_spots: bool List of voxel coordinates (relative to receptive field center) to be included in the blind-spot. For example, you can give a list of 3 tuples: [(0,0,0), (0,1,0), (0,-1,0)] to extend the blind spot to cover voxels of relative coordinates: (0,0,0),(0,1,0), and (0,-1,0) (advanced) (hidden) jinv_interpolation_mode: str J-invariance interpolation mode for masking. Can be: 'median' or 'gaussian'. (advanced) display_images: bool When True the denoised images encountered during optimisation are shown. (advanced) (hidden) display_crop: bool Displays crop, for debugging purposes... (advanced) (hidden) other_fixed_parameters: dict Any other fixed parameters Returns ------- Denoising function, dictionary containing optimal parameters, and free memory needed in bytes for computation. """ # Convert image to float if needed: image = image.astype(dtype=numpy.float32, copy=False) # obtain representative crop, to speed things up... crop = representative_crop( image, crop_size=crop_size_in_voxels, display_crop=display_crop ) # Combine fixed parameters: other_fixed_parameters = other_fixed_parameters | {'rank': rank} # Parameters to test when calibrating the denoising algorithm parameter_ranges = { 'alpha': numpy.linspace(0, 1, max_num_evaluations).tolist(), 'filter': ['uniform'], } # Partial function: _denoise_harmonic = partial(denoise_harmonic, **other_fixed_parameters) # Calibrate denoiser 1st pass: best_parameters = ( calibrate_denoiser( crop, _denoise_harmonic, mode=optimiser, denoise_parameters=parameter_ranges, interpolation_mode=jinv_interpolation_mode, max_num_evaluations=max_num_evaluations, blind_spots=blind_spots, display_images=display_images, loss_function='L2', ) | other_fixed_parameters ) # Parameters to test when calibrating the denoising algorithm parameter_ranges = { 'alpha': [best_parameters['alpha']], 'filter': ['uniform', 'gaussian', 'median'], } # Calibrate denoiser 2nd pass: best_parameters = ( calibrate_denoiser( crop, _denoise_harmonic, mode=optimiser, denoise_parameters=parameter_ranges, interpolation_mode=jinv_interpolation_mode, max_num_evaluations=max_num_evaluations, blind_spots=blind_spots, display_images=display_images, loss_function='L2', ) | other_fixed_parameters ) # Memory needed: memory_needed = 3 * image.nbytes return denoise_harmonic, best_parameters, memory_needed
[docs]def denoise_harmonic( image: ArrayLike, filter: str = 'uniform', rank: bool = False, max_iterations: int = 1024, epsilon: float = 1e-8, alpha: float = 0.5, step: float = 0.1, max_gradient: float = 32, **kwargs, ): """ Denoises the given image by applying a non-linear <a href="https://en.wikipedia.org/wiki/Harmonic_function">harmonic</a> prior. The gradient of the prior term is a laplace-like operator that is scaled with the range of values around the pixel. One of its specificities is that it is very effective at smoothing uniform regions of an image. \n\n Note: Works well in practice, but a bit slow as currently implemented for large images. Parameters ---------- image: ArrayLike Image to be denoised filter: str Type of filter used to compute the Laplace-like prior. Can be either 'uniform', 'gaussian' or 'median'. rank: bool Uses a more robust estimation of the range. max_iterations: int Max number of iterations. epsilon: float Small value used to determine convergence. alpha: float Balancing between data and prior term. A value of 0 favours the prior entirely, whether a value of 1 favours the data term entirely. step: float Starting step used for gradient descent max_gradient: float Maximum gradient tolerated -- usefull to avoid 'numerical explosions' ;-) Returns ------- Denoised image """ # Convert image to float if needed: image = image.astype(dtype=numpy.float32, copy=False) # Allocate denoise image: denoised = numpy.empty_like(image) denoised[...] = image # allocate gradient: gradient = numpy.zeros_like(image) # last gradient magnitude: last_gradient_norm = math.inf # Iterations: counter = 0 for i in range(max_iterations): # regularisation term: gradient[...] = alpha * _laplace(denoised, filter, rank) # data term: gradient += (1 - alpha) * (image - denoised) # clip gradient: gradient.clip(-max_gradient, max_gradient) # Optimisation step: denoised += step * gradient # gradient magnitude: gradient_norm = norm(gradient.ravel(), ord=numpy.inf) / gradient.size if gradient_norm > last_gradient_norm: # If gradient jumps around turn down the heat: step *= 0.95 else: # if teh gradient goes down, turn up the heat: step *= 1.01 # Stopping if convergence or stabilisation: if gradient_norm < epsilon: lprint("Converged!") break # Stopping if convergence or stabilisation: if last_gradient_norm == gradient_norm: counter += 1 if counter > 8: lprint("Gradient stabilised! converged!") break # We save the last gradient: last_gradient_norm = gradient_norm # if i % 32 == 0: # lprint(f"gradient magnitude: {gradient_norm}, step: {step}") return denoised
def _laplace(image, filter: str = 'uniform', rank: bool = False): if rank: min_value = rank_filter(image, size=3, rank=1) max_value = rank_filter(image, size=3, rank=-2) else: min_value = minimum_filter(image, size=3) max_value = maximum_filter(image, size=3) range = max_value - min_value + 1e-6 if filter == 'uniform': return (uniform_filter(image, size=3) - image) / range elif filter == 'gaussian': return (gaussian_filter(image, sigma=1, truncate=2) - image) / range elif filter == 'median': return (median_filter(image, size=3) - image) / range