Source code for aydin.it.classic_denoisers.bilateral

from functools import partial
from typing import Optional, List, Tuple

import numpy
from numpy.typing import ArrayLike
from skimage.restoration import denoise_bilateral as skimage_denoise_bilateral

from aydin.it.classic_denoisers import _defaults
from aydin.util.crop.rep_crop import representative_crop
from aydin.util.denoise_nd.denoise_nd import extend_nd
from aydin.util.j_invariance.j_invariance import calibrate_denoiser


[docs]def calibrate_denoise_bilateral( image: ArrayLike, bins: int = 10000, crop_size_in_voxels: Optional[int] = _defaults.default_crop_size_normal.value, optimiser: str = _defaults.default_optimiser.value, max_num_evaluations: int = _defaults.default_max_evals_normal.value, blind_spots: Optional[List[Tuple[int]]] = _defaults.default_blind_spots.value, jinv_interpolation_mode: str = _defaults.default_jinv_interpolation_mode.value, display_images: bool = False, display_crop: bool = False, **other_fixed_parameters, ): """ Calibrates the bilateral denoiser for the given image and returns the optimal parameters obtained using the N2S loss. Note: it seems that the bilateral filter of scikit-image is broken! Parameters ---------- image: ArrayLike Image to calibrate denoiser for. bins: int Number of discrete values for Gaussian weights of color filtering. A larger value results in improved accuracy. (advanced) crop_size_in_voxels: int or None for default Number of voxels for crop used to calibrate denoiser. Increase this number by factors of two if denoising quality is unsatisfactory -- this can be important for very noisy images. Values to try are: 65000, 128000, 256000, 320000. We do not recommend values higher than 512000. optimiser: str Optimiser to use for finding the best denoising parameters. Can be: 'smart' (default), or 'fast' for a mix of SHGO followed by L-BFGS-B. (advanced) max_num_evaluations: int Maximum number of evaluations for finding the optimal parameters. Increase this number by factors of two if denoising quality is unsatisfactory. blind_spots: bool List of voxel coordinates (relative to receptive field center) to be included in the blind-spot. For example, you can give a list of 3 tuples: [(0,0,0), (0,1,0), (0,-1,0)] to extend the blind spot to cover voxels of relative coordinates: (0,0,0),(0,1,0), and (0,-1,0) (advanced) (hidden) jinv_interpolation_mode: str J-invariance interpolation mode for masking. Can be: 'median' or 'gaussian'. (advanced) display_images: bool When True the denoised images encountered during optimisation are shown (advanced) (hidden) display_crop: bool Displays crop, for debugging purposes... (advanced) (hidden) other_fixed_parameters: dict Any other fixed parameters Returns ------- Denoising function, dictionary containing optimal parameters, and free memory needed in bytes for computation. """ # Convert image to float if needed: image = image.astype(dtype=numpy.float32, copy=False) # obtain representative crop, to speed things up... crop = representative_crop( image, crop_size=crop_size_in_voxels, display_crop=display_crop ) # Parameters to test when calibrating the denoising algorithm parameter_ranges = {'sigma_spatial': (0.01, 1), 'sigma_color': (0.01, 1)} # Combine fixed parameters: other_fixed_parameters = other_fixed_parameters | {'bins': bins} # Partial function: _denoise_bilateral = partial(denoise_bilateral, **other_fixed_parameters) # Calibrate denoiser best_parameters = ( calibrate_denoiser( crop, _denoise_bilateral, mode=optimiser, denoise_parameters=parameter_ranges, interpolation_mode=jinv_interpolation_mode, max_num_evaluations=max_num_evaluations, blind_spots=blind_spots, display_images=display_images, ) | other_fixed_parameters ) # Memory needed: memory_needed = 2 * image.nbytes return denoise_bilateral, best_parameters, memory_needed
[docs]def denoise_bilateral( image: ArrayLike, sigma_color: Optional[float] = None, sigma_spatial: float = 1, bins: int = 10000, **kwargs, ): """ Denoises the given image using a <a href="https://en.wikipedia.org/wiki/Bilateral_filter">bilateral filter</a>. The bilateral filter is a edge-preserving smoothing filter that can be used for image denoising. Each pixel value is replaced by a weighted average of intensity values from nearby pixels. The weighting is inversely related to the pixel distance in space but also in the pixels value differences. Parameters ---------- image : ArrayLike Image to denoise sigma_color : float Standard deviation for grayvalue/color distance (radiometric similarity). A larger value results in averaging of pixels with larger radiometric differences. Note, that the image will be converted using the `img_as_float` function and thus the standard deviation is in respect to the range ``[0, 1]``. If the value is ``None`` the standard deviation of the ``image`` will be used. sigma_spatial : float Standard deviation for range distance. A larger value results in averaging of pixels with larger spatial differences. bins : int Number of discrete values for Gaussian weights of color filtering. A larger value results in improved accuracy. kwargs: dict Other parameters Returns ------- Denoised image """ # Convert image to float if needed: image = image.astype(dtype=numpy.float32, copy=False) _skimage_denoise_bilateral = extend_nd(available_dims=[2])( skimage_denoise_bilateral ) return _skimage_denoise_bilateral( image, sigma_color=sigma_color, sigma_spatial=sigma_spatial, bins=bins, mode='reflect', **kwargs, )