Support Vector Regressor
- class aydin.regression.support_vector.SupportVectorRegressor(linear: bool = True)[source]
 The Support Vector Regressor is too slow and does not in pour experience perform better than random forests or gradient boosting.
- fit(x_train, y_train, x_valid=None, y_valid=None, regressor_callback=None)
 Fits function y=f(x) given training pairs (x_train, y_train). Stops when performance stops improving on the test dataset: (x_test, y_test). The target y_train can have multiple ‘channels’. This will cause multiple regressors to be instanciated internally to be able to predict these channels from the input features.
- Parameters
 - x_train
 x training values
- y_train
 y training values
- x_valid
 x validation values
- y_valid
 y validation values
- regressor_callback
 regressor callback
- static load(path: str)
 Returns an ‘all-batteries-included’ regressor from a given path (folder).
- Parameters
 - path
 path to load from.
- Returns
 - thawedobject
 
- predict(x, models_to_use=None)
 Predicts y given x by applying the learned function f: y=f(x) If the regressor is trained on multiple ouput channels, this will return the corresponding number of channels…
- Parameters
 - x
 x values
- models_to_use
 
- Returns
 - numpy.typing.ArrayLike
 inferred y values
- recommended_max_num_datapoints() int
 Recommended maximum number of datapoints
- Returns
 - int
 
- save(path: str)
 Saves an ‘all-batteries-included’ regressor at a given path (folder).
- Parameters
 - path
 path to save to
- Returns
 - frozenEncoded JSON object
 
- stop_fit()
 Stops training (can be called by another thread)